Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445841

RESUMO

The central dogma of genetics, which outlines the flow of genetic information from DNA to RNA to protein, has long been the guiding principle in molecular biology. In fact, more than three-quarters of the RNAs produced by transcription of the plant genome are not translated into proteins, and these RNAs directly serve as non-coding RNAs in the regulation of plant life activities at the molecular level. The breakthroughs in high-throughput transcriptome sequencing technology and the establishment and improvement of non-coding RNA experiments have now led to the discovery and confirmation of the biogenesis, mechanisms, and synergistic effects of non-coding RNAs. These non-coding RNAs are now predicted to play important roles in the regulation of gene expression and responses to stress and evolution. In this review, we focus on the synthesis, and mechanisms of non-coding RNAs, and we discuss their impact on gene regulation in plants.


Assuntos
Regulação da Expressão Gênica , RNA Longo não Codificante , RNA/genética , Plantas/genética , Genoma de Planta , RNA Longo não Codificante/genética , RNA de Plantas/genética
2.
Microbiol Spectr ; 11(4): e0011023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37310220

RESUMO

Pecan (Carya illinoinensis) and Chinese hickory (Carya cathayensis) are important commercially cultivated nut trees. They are phylogenetically closely related plants; however, they exhibit significantly different phenotypes in response to abiotic stress and development. The rhizosphere selects core microorganisms from bulk soil, playing a pivotal role in the plant's resistance to abiotic stress and growth. In this study, we used metagenomic sequencing to compare the selection capabilities of seedling pecan and seedling hickory at taxonomic and functional levels in bulk soil and the rhizosphere. We observed that pecan has a stronger capacity to enrich rhizosphere plant-beneficial microbe bacteria (e.g., Rhizobium, Novosphingobium, Variovorax, Sphingobium, and Sphingomonas) and their associated functional traits than hickory. We also noted that the ABC transporters (e.g., monosaccharide transporter) and bacterial secretion systems (e.g., type IV secretion system) are the core functional traits of pecan rhizosphere bacteria. Rhizobium and Novosphingobium are the main contributors to the core functional traits. These results suggest that monosaccharides may help Rhizobium to efficiently enrich this niche. Novosphingobium may use a type IV secretion system to interact with other bacteria and thereby influence the assembly of pecan rhizosphere microbiomes. Our data provide valuable information to guide core microbial isolation and expand our knowledge of the assembly mechanisms of plant rhizosphere microbes. IMPORTANCE The rhizosphere microbiome has been identified as a fundamental factor in maintaining plant health, helping plants to fight the deleterious effects of diseases and abiotic stresses. However, to date, studies on the nut tree microbiome have been scarce. Here, we observed a significant "rhizosphere effect" on the seedling pecan. We furthermore demonstrated the core rhizosphere microbiome and function in the seedling pecan. Moreover, we deduced possible factors that help the core bacteria, such as Rhizobium, to efficiently enrich the pecan rhizosphere and the importance of the type IV system for the assembly of pecan rhizosphere bacterial communities. Our findings provide information for understanding the mechanism of the rhizosphere microbial community enrichment process.


Assuntos
Carya , Rizosfera , Carya/microbiologia , Sistemas de Secreção Tipo IV , Bactérias/genética , Fenótipo , Solo , Microbiologia do Solo
3.
Plants (Basel) ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987065

RESUMO

Pecan (Carya illinoensis) nuts are delicious and rich in unsaturated fatty acids, which are beneficial for human health. Their yield is closely related to several factors, such as the ratio of female and male flowers. We sampled and paraffin-sectioned female and male flower buds for one year and determined the stages of initial flower bud differentiation, floral primordium formation, and pistil and stamen primordium formation. We then performed transcriptome sequencing on these stages. Our data analysis suggested that FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 play a role in flower bud differentiation. J3 was highly expressed in the early stage of female flower buds and may play a role in regulating flower bud differentiation and flowering time. Genes such as NF-YA1 and STM were expressed during male flower bud development. NF-YA1 belongs to the NF-Y transcription factor family and may initiate downstream events leading to floral transformation. STM promoted the transformation of leaf buds to flower buds. AP2 may have been involved in the establishment of floral meristem characteristics and the determination of floral organ characteristics. Our results lay a foundation for the control and subsequent regulation of female and male flower bud differentiation and yield improvement.

4.
J Agric Food Chem ; 71(12): 4901-4914, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36938622

RESUMO

Pecan (Carya illinoinensis) is a popular tree nut. Its fruit development undergoes slow growth, rapid expansion, core hardening, and kernel maturation stages. However, little is known about how pecan initiates fruit development and enlargement after pollination. In this study, we performed the first large-scale identification of potential phosphorylation sites and proteins at early development of pecan fruit by a label-free phosphoproteomic quantification technique. A total of 2155 phosphosites were identified from 1953 phosphopeptides covering 1311 phosphoproteins in unpollinated pistils and fruits at 5 and 9 weeks after pollination. Of these, 699 nonredundant phosphoproteins were differentially phosphorylated (DP). Furthermore, the phosphorylation intensity of DP proteins in brassinolide (BR) and auxin signaling were analyzed, and the function of CiBZR1 was investigated. Ectopic expression of CiBZR1 resulted in BR response phenotypes with curled leaves and fruit, while enlarged seed size in Arabidopsis. Subcellular localization and transcriptional activation activity assay demonstrated that CiBZR1 distributed in both the nucleus and cytoplasm with transcriptional activity. When two phosphosites mutated, CiBZR1S201P,S205G moved to the nucleus completely, while the transcriptional activity remained unchanged. Taken together, our data reveal extensive phosphoproteins and lay a foundation to comprehensively dissect the potential post-translational regulation mechanism of early development of pecan fruit.


Assuntos
Carya , Frutas , Frutas/genética , Nozes , Sementes , Fenótipo
6.
Front Plant Sci ; 13: 1023938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275551

RESUMO

Biomass energy is an essential component of the agriculture economy and represents an important and particularly significant renewable energy source in the fight against fossil fuel depletion and global warming. The recognition that many plants naturally synthesize hydrocarbons makes these oil plants indispensable resources for biomass energy, and the advancement of next-generation sequencing technology in recent years has now made available mountains of data on plants that synthesize oil. We have utilized a combination of bioinformatic protocols to acquire key information from this massive amount of genomic data and to assemble it into an oil plant genomic information repository, built through website technology, including Django, Bootstrap, and echarts, to create the Genomic Information Repository for Oil Plants (GROP) portal (http://grop.site/) for genomics research on oil plants. The current version of GROP integrates the coding sequences, protein sequences, genome structure, functional annotation information, and other information from 18 species, 22 genome assemblies, and 46 transcriptomes. GROP also provides BLAST, genome browser, functional enrichment, and search tools. The integration of the massive amounts of oil plant genomic data with key bioinformatics tools in a database with a user-friendly interface allows GROP to serve as a central information repository to facilitate studies on oil plants by researchers worldwide.

7.
Plants (Basel) ; 11(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36079670

RESUMO

Heading date (HD) is one of the agronomic traits that influence maturity, regional adaptability, and grain yield. The present study was a follow-up of a previous quantitative trait loci (QTL) mapping study conducted on three populations, which uncovered a total of 62 QTLs associated with 10 agronomic traits. Two of the QTLs for HD on chromosome 7 (qHD7a and qHD7b) had a common flanking marker (RM3670) that may be due to tight linkage, and/or weakness of the statistical method. The objectives of the present study were to map QTLs associated with HD in a set of 76 chromosome segment substitution lines (CSSLs), fine map and validate one of the QTLs (qHD7b) using 2997 BC5F2:3 plants, and identify candidate genes using sequencing and expression analysis. Using the CSSLs genotyped with 120 markers and evaluated under two short-day and two long-day growing conditions, we uncovered a total of fourteen QTLs (qHD2a, qHD4a, qHD4b, qHD5a, qHD6a, qHD6b, qHD7b, qHD7c, qHD8a, qHD10a, qHD10b, qHD11a, qHD12a, and qHD12b). However, only qHD6a and qHD7b were consistently detected in all four environments. The phenotypic variance explained by qHD6a and qHD7b varied from 10.1% to 36.1% (mean 23.1%) and from 8.1% to 32.8% (mean 20.5%), respectively. One of the CSSL lines (CSSL52), which harbored a segment from the early heading XieqingzaoB (XQZB) parent at the qHD7b locus, was then used to develop a BC5F2:3 population for fine mapping and validation. Using a backcross population evaluated for four seasons under different day lengths and temperatures, the qHD7b interval was delimited to a 912.7-kb region, which is located between RM5436 and RM5499. Sequencing and expression analysis revealed a total of 29 candidate genes, of which Ghd7 (Os07g0261200) is a well-known gene that affects heading date, plant height, and grain yield in rice. The ghd7 mutants generated through CRISPR/Cas9 gene editing exhibited early heading. Taken together, the results from both the previous and present study revealed a consistent QTL for heading date on chromosome 7, which coincided not only with the physical position of a known gene, but also with two major effect QTLs that controlled the stigma exertion rate and the number of spikelets in rice. The results provide contributions to the broader adaptability of marker-assisted breeding to develop high-yield rice varieties.

8.
Front Genet ; 13: 910488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646060

RESUMO

Hickory, an endemic woody oil and fruit tree species in China, is of great economic value. However, hickory has a long juvenile period and an inconsistent flowering of males and females, thus influencing the bearing rates and further limiting fruits yield. Currently, it is reported that long noncoding RNAs (lncRNAs) play critical regulatory roles in biological processes. However, the role of lncRNAs in the development of hickory female flowers remains unclear. In this study, a total of 6,862 putative lncRNAs were identified from the female flower transcriptomes in three different growth stages of hickory. We proposed that lncRNAs might play an important role in phytohormone signaling processes for flower formation, especially in the abscisic acid and jasmonic acid pathways, according to the results of our Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Moreover, we predicted the interactions among four microRNAs (miRNAs), three lncRNAs, and four genes. We proposed that facing the changing environment, LNC_002115 competes with PHOSPHATE2 (PHO2) for the binding sites on cca-miR399f, and protects PHO2 from suppression. In addition, cis-acting LNC_002115 regulates the expression of the SHORT VEGETATIVE PHASE (SVP) by influencing ABRE-binding factor (ABF). In brief, LNC_002115 regulates hickory female floral development by impacting both PHO2 and SVP. This study was the first to identify lncRNAs involved in hickory female floral development, and provided new insight to elucidate how lncRNAs and their targets play a role in female floral development in hickory, thus unfolding the opportunities for functional characterization of blossom-related lncRNAs in further studies.

9.
Front Plant Sci ; 13: 1000489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684801

RESUMO

Flower bud differentiation represents a crucial transition from vegetative growth to reproductive development. Carya cathayensis (hickory) is an important economic species in China, with a long juvenile period that hinders its commercial development. In recent years, circular RNAs (circRNAs) have been widely studied and identified as sponges for miRNA regulation of mRNA expression. However, little is known regarding the role of circRNAs in flower buds. In this study, we sequenced circRNAs at three developmental stages (undifferentiated, differentiating, and fully differentiated) in both female and male buds. A total of 6,931 circRNAs were identified in the three developmental stages and 4,449 and 2,209 circRNAs were differentially expressed in female and male buds, respectively. Gene ontology demonstrated that many circRNA host genes participated in various processes, for example, cellular and intracellular pH regulation. Function annotation identified 46 differentially expressed circRNAs involved in flowering regulation, with 28 circRNAs found only in female buds, 4 found only in male buds, and 11 found in both female and male buds. A circRNA-miRNA-mRNA network was predicted based on 13 flowering-related circRNAs and their seven putative interacting miRNAs to describe the regulatory mechanism. Our preliminary results demonstrated a potential involvement of circRNA in bud differentiation. They provided a preliminary theoretical basis for how circRNA might participate in flower development in hickory, perhaps in woody plants.

10.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948359

RESUMO

The AP2 transcriptional factors (TFs) belong to the APETALA2/ ethylene-responsive factor (AP2/ERF) superfamily and regulate various biological processes of plant growth and development, as well as response to biotic and abiotic stresses. However, genome-wide research on the AP2 subfamily TFs in the pecan (Carya illinoinensis) is rarely reported. In this paper, we identify 30 AP2 subfamily genes from pecans through a genome-wide search, and they were unevenly distributed on the pecan chromosomes. Then, a phylogenetic tree, gene structure and conserved motifs were further analyzed. The 30 AP2 genes were divided into euAP2, euANT and basalANT three clades. Moreover, the cis-acting elements analysis showed many light responsive elements, plant hormone-responsive elements and abiotic stress responsive elements are found in CiAP2 promoters. Furthermore, a qPCR analysis showed that genes clustered together usually shared similar expression patterns in euAP2 and basalANT clades, while the expression pattern in the euANT clade varied greatly. In developing pecan fruits, CiAP2-5, CiANT1 and CiANT2 shared similar expression patterns, and their expression levels decreased with fruit development. CiANT5 displayed the highest expression levels in developing fruits. The subcellular localization and transcriptional activation activity assay demonstrated that CiANT5 is located in the nucleus and functions as a transcription factor with transcriptional activation activity. These results help to comprehensively understand the pecan AP2 subfamily TFs and lay the foundation for further functional research on pecan AP2 family genes.


Assuntos
Carya/genética , Proteínas de Plantas/genética , Fator de Transcrição AP-2/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia
11.
Front Plant Sci ; 12: 629314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763090

RESUMO

Rice (Oryza sativa L.) occupies a very salient and indispensable status among cereal crops, as its vast production is used to feed nearly half of the world's population. Male sterile plants are the fundamental breeding materials needed for specific propagation in order to meet the elevated current food demands. The development of the rice varieties with desired traits has become the ultimate need of the time. Genic male sterility is a predominant system that is vastly deployed and exploited for crop improvement. Hence, the identification of new genetic elements and the cognizance of the underlying regulatory networks affecting male sterility in rice are crucial to harness heterosis and ensure global food security. Over the years, a variety of genomics studies have uncovered numerous mechanisms regulating male sterility in rice, which provided a deeper and wider understanding on the complex molecular basis of anther and pollen development. The recent advances in genomics and the emergence of multiple biotechnological methods have revolutionized the field of rice breeding. In this review, we have briefly documented the recent evolution, exploration, and exploitation of genic male sterility to the improvement of rice crop production. Furthermore, this review describes future perspectives with focus on state-of-the-art developments in the engineering of male sterility to overcome issues associated with male sterility-mediated rice breeding to address the current challenges. Finally, we provide our perspectives on diversified studies regarding the identification and characterization of genic male sterility genes, the development of new biotechnology-based male sterility systems, and their integrated applications for hybrid rice breeding.

12.
Plants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009055

RESUMO

Due to its peculiar morphological characteristics, there is dispute as to whether the genus of Annamocarya sinensis, a species of Juglandaceae, is Annamocarya or Carya. Most morphologists believe it should be distinguished from the Carya genus while genomicists suggest that A. sinensis belongs to the Carya genus. To explore the taxonomic status of A. sinensis using chloroplast genes, we collected chloroplast genomes of 16 plant species and assembled chloroplast genomes of 10 unpublished Carya species. We analyzed all 26 species' chloroplast genomes through two analytical approaches (concatenation and coalescence), using the entire and unique chloroplast coding sequence (CDS) and entire and protein sequences. Our results indicate that the analysis of the CDS and protein sequences or unique CDS and unique protein sequence of chloroplast genomes shows that A. sinensis indeed belongs to the Carya genus. In addition, our analysis shows that, compared to single chloroplast genes, the phylogeny trees constructed using numerous genes showed higher consistency. Moreover, the phylogenetic analysis calculated with the coalescence method and unique gene sequences was more robust than that done with the concatenation method, particularly for analyzing phylogenetically controversial species. Through the analysis, our results concluded that A. sinensis should be called C. sinensis.

13.
Theor Appl Genet ; 134(2): 453-471, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33089345

RESUMO

Key message Rice male fertility gene Baymax1, isolated through map-based cloning, encodes a MYB transcription factor and is essential for rice tapetum and microspore development.Abstract The mining and characterization of male fertility gene will provide theoretical and material basis for future rice production. In Arabidopsis, the development of male organ (namely anther), usually involves the coordination between MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic helix-loop-helix) members. However, the role of MYB proteins in rice anther development remains poorly understood. In this study, we isolated and characterized a male sterile mutant (with normal vegetative growth) of Baymax1 (BM1), which encodes a MYB protein. The bm1 mutant exhibited slightly lagging meiosis, aborted transition of the tapetum to a secretory type, premature tapetal degeneration, and abnormal pollen exine formation, leading to ultimately lacks of visible pollens in the mature white anthers. Map-based cloning, complementation and targeted mutagenesis using CRISPR/Cas9 technology demonstrated that the mutated LOC_Os04g39470 is the causal gene in bm1. BM1 is preferentially expressed in rice anthers from stage 5 to stage 10. Phylogenetic analysis indicated that rice BM1 and its homologs in millet, maize, rape, cabbage, and pigeonpea are evolutionarily conserved. BM1 can physically interacts with bHLH protein TIP2, EAT1, and PHD (plant homeodomain)-finger member TIP3, respectively. Moreover, BM1 affects the expression of several known genes related to tapetum and microspore development. Collectively, our results suggest that BM1 is one of key regulators for rice male fertility and may serve as a potential target for rice male-sterile line breeding and hybrid seed production.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Fenótipo , Infertilidade das Plantas , Proteínas de Plantas/metabolismo , Pólen/química , Proteínas Proto-Oncogênicas c-myb/metabolismo , Mutação , Oryza/genética , Filogenia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas Proto-Oncogênicas c-myb/genética
14.
Rice (N Y) ; 12(1): 31, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073866

RESUMO

Seed setting rate is one of the major components that determine rice (Oryza sativa L.) yield. Successful fertilization is necessary for normal seed setting. However, little is known about the molecular mechanisms governing this process. In this study, we report a novel rice gene, LOW SEED SETTING RATE1 (LSSR1), which regulates the seed setting rate by facilitating rice fertilization. LSSR1 encodes a putative GH5 cellulase, which is highly conserved in plants. LSSR1 is predominantly expressed in anthers during the microsporogenesis stage, and its encoded protein contains a signal peptide at the N-terminal, which may be a secretory protein that stores in pollen grains and functions during rice fertilization. To explore the physiological function of LSSR1 in rice, loss-of-function mutants of LSSR1 were created through the CRISPR-Cas9 system, which showed a significant decrease in rice seed setting rate. However, the morphology of the vegetative and reproductive organs appears normal in lssr1 mutant lines. In addition, lssr1 pollen grains could be normally stained by I2-KI solution. Cytological results demonstrate that the blockage of fertilization mostly accounted for the low seed setting rate in lssr1 mutant lines, which was most likely caused by abnormal pollen grain germination, failed pollen tube penetration, and retarded pollen tube elongation. Together, our results suggest that LSSR1 plays an important role in rice fertilization, which in turn is vital for maintaining rice seed setting rate.

15.
Plant J ; 99(5): 844-861, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31021015

RESUMO

Male reproductive development involves a complex series of biological events and precise transcriptional regulation is essential for this biological process in flowering plants. Several transcriptional factors have been reported to regulate tapetum and pollen development, however the transcriptional mechanism underlying Ubisch bodies and pollen wall formation remains less understood. Here, we characterized and isolated a male sterility mutant of TDR INTERACTING PROTEIN 3 (TIP3) in rice. The tip3 mutant displayed smaller and pale yellow anthers without mature pollen grains, abnormal Ubisch body morphology, no pollen wall formation, as well as delayed tapetum degeneration. Map-based cloning demonstrated that TIP3 encodes a conserved PHD-finger protein and further study confirmed that TIP3 functioned as a transcription factor with transcriptional activation activity. TIP3 is preferentially expressed in the tapetum and microspores during anther development. Moreover, TIP3 can physically interact with TDR, which is a key component of the transcriptional cascade in regulating tapetum development and pollen wall formation. Furthermore, disruption of TIP3 changed the expression of several genes involved in tapetum development and degradation, biosynthesis and transport of lipid monomers of sporopollenin in tip3 mutant. Taken together, our results revealed an unprecedented role for TIP3 in regulating Ubisch bodies and pollen exine formation, and presents a potential tool to manipulate male fertility for hybrid rice breeding.


Assuntos
Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Aquaporinas/genética , Aquaporinas/metabolismo , Biopolímeros , Carotenoides , Fragmentação do DNA , Regulação da Expressão Gênica de Plantas , Infertilidade/genética , Fenótipo , Pólen/citologia , Alinhamento de Sequência , Análise de Sequência de Proteína
16.
Plant Mol Biol ; 99(1-2): 175-191, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30610522

RESUMO

KEY MESSAGE: OsMS1 functions as a transcriptional activator and interacts with known tapetal regulatory factors through its plant homeodomain (PHD) regulating tapetal programmed cell death (PCD) and pollen exine formation in rice. The tapetum, a hallmark tissue in the stamen, undergoes degradation triggered by PCD during post-meiotic anther development. This degradation process is indispensable for anther cuticle and pollen exine formation. Previous study has shown that PTC1 plays a critical role in the regulation of tapetal PCD. However, it remained unclear how this occurs. To further investigate the role of this gene in rice, we used CRISPR/Cas9 system to generate the homozygous mutant named as osms1, which showed complete male sterility with slightly yellow and small anthers, as well as invisible pollen grains. In addition, cytological observation revealed delayed tapetal PCD, defective pollen exine formation and a lack of DNA fragmentation according to a TUNEL analysis in the anthers of osms1 mutant. OsMS1, which encodes a PHD finger protein, was located in the nucleus of rice protoplasts and functioned as a transcription factor with transcriptional activation activity. Y2H and BiFC assays demonstrated that OsMS1 can interact with OsMADS15 and TDR INTERACTING PROTEIN2 (TIP2). It has been reported that TIP2 coordinated with TDR to modulate the expression of EAT1 and further regulated tapetal PCD in rice. Results of qPCR suggested that the expression of the genes associated with tapetal PCD and pollen wall biosynthesis, such as EAT1, AP37, AP25, OsC6 and OsC4, were significantly reduced in osms1 mutant. Taken together, our results demonstrate that the interaction of OsMS1 with known tapetal regulatory factors through its PHD finger regulates tapetal PCD and pollen exine formation in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Pólen/genética , Fatores de Transcrição/metabolismo , Mutação , Oryza/citologia , Oryza/crescimento & desenvolvimento , Fenótipo , Infertilidade das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/citologia , Pólen/crescimento & desenvolvimento , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
17.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545137

RESUMO

In flowering plants, ideal male reproductive development requires the systematic coordination of various processes, in which timely differentiation and degradation of the anther wall, especially the tapetum, is essential for both pollen formation and anther dehiscence. Here, we show that OsGPAT3, a conserved glycerol-3-phosphate acyltransferase gene, plays a critical role in regulating anther wall degradation and pollen exine formation. The gpat3-2 mutant had defective synthesis of Ubisch bodies, delayed programmed cell death (PCD) of the inner three anther layers, and abnormal degradation of micropores/pollen grains, resulting in failure of pollen maturation and complete male sterility. Complementation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) experiments demonstrated that OsGPAT3 is responsible for the male sterility phenotype. Furthermore, the expression level of tapetal PCD-related and nutrient metabolism-related genes changed significantly in the gpat3-2 anthers. Based on these genetic and cytological analyses, OsGPAT3 is proposed to coordinate the differentiation and degradation of the anther wall and pollen grains in addition to regulating lipid biosynthesis. This study provides insights for understanding the function of GPATs in regulating rice male reproductive development, and also lays a theoretical basis for hybrid rice breeding.


Assuntos
Apoptose , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Pólen/citologia , Pólen/crescimento & desenvolvimento , Sequência de Bases , Mapeamento Cromossômico , Fragmentação do DNA , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudos de Associação Genética , Teste de Complementação Genética , Mutação/genética , Oryza/genética , Fenótipo , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Pólen/metabolismo , Pólen/ultraestrutura , Reprodutibilidade dos Testes
18.
Sci Rep ; 8(1): 14523, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266907

RESUMO

Stigma exsertion is a key determinant to increase the efficiency of commercial hybrid rice seed production. The major quantitative trait locus (QTL) qSE7 for stigma exsertion rate was previously detected on the chromosome 7 using 75 Chromosome Segment Substitution Lines (CSSLs) derived from a cross between the high stigma exsertion indica maintainer XieqingzaoB (XQZB) and low stigma exsertion indica restorer Zhonghui9308 (ZH9308). The C51 line, a CSSL population with an introgression from XQZB, was backcrossed with ZH9308 to produce the secondary F2 (BC5F2) and F2:3 (BC5F2:3) populations. As a result, the Near Isogenic Line (NIL qSE7XB) was developed. Analysis indicated qSE7 acted as a single Mendelian factor and decreased the stigma exsertion. We hypothesized qSE7 regulates single, dual, and total stigma exsertion rate, provided experimental support. qSE7 was mapped and localized between RM5436 and RM5499 markers, within a physical distance of 1000-kb. With use of new insertion-deletion (InDel) markers and analysis of the heterozygous and phenotypic data, it was ultimately dissected to a 322.9-kb region between InDel SER4-1 and RM5436. The results are useful for additional identification and isolation of this candidate gene controlling stigma exsertion rate, and provide a basis for further fine mapping, gene cloning, and Marker Assisted Selection (MAS) breeding later.


Assuntos
Cromossomos de Plantas/genética , Flores/crescimento & desenvolvimento , Oryza/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Mutação INDEL , Fenótipo
19.
Gene ; 649: 63-73, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29355682

RESUMO

Anther cuticle and pollen exine are two elaborated lipid-soluble barriers protecting pollen grains from environmental and biological stresses. However, less is known about the mechanisms underlying the synthesis of these lipidic polymers. Here, we identified a no-pollen male-sterility mutant cyp703a3-3 from the indica restorer line Zhonghui 8015 (Zh8015) mutant library treated with 60Coγ-ray radiation. Histological analysis indicated that cyp703a3-3 underwent abnormal tapetal cells development, produced few orbicules and secreted less sporopollenin precursors to anther locule, as well as cutin monomers on anther. Genetic analysis revealed that cyp703a3-3 was controlled by a single recessive gene. Map-based cloning was performed to narrow down the mutant gene to a 47.78-kb interval on the chromosome 8 between two markers S15-29 and S15-30. Sequence analysis detected three bases (GAA) deletion in the first exon of LOC_Os08g03682, annotated as CYP703A3 with homologous sequences related to male sterility in Arabidopsis, causing the Asparagine deletion in the mutant site. Moreover, we transformed genomic fragment of CYP703A3 into cyp703a3-3, which male-sterility phenotype was recovered. Both the wild-type and cyp703a3-3 mutant 3D structure of CYP703A3 protein were modeled. Results of qPCR suggested CYP703A3 mainly expressed in anthers with greatest abundance at microspore stage, and genes involved in sporopollenin precursors formation and transportation, such as GAMYB, TDR, CYP704B2, DPW2, OsABCG26 and OsABCG15, were significantly reduced in cyp703a3-3. Collectively, our results further elaborated CYP703A3 plays vital role in anther cuticle and pollen exine development in rice (Oryza sativa L.).


Assuntos
Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Oryza/genética , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biopolímeros/genética , Biopolímeros/metabolismo , Carotenoides/genética , Carotenoides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos de Membrana/genética , Fenótipo , Pólen/genética , Pólen/metabolismo
20.
Front Plant Sci ; 8: 1639, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29021797

RESUMO

Meiosis is crucial in reproduction of plants and ensuring genetic diversity. Although several genes involved in homologous recombination and DNA repair have been reported, their functions in rice (Oryza sativa) male meiosis remain poorly understood. Here, we isolated and characterized the rice OsFIGNL1 (OsFidgetin-like 1) gene, encoding a conserved AAA-ATPase, and explored its function and importance in male meiosis and pollen formation. The rice Osfignl1 mutant exhibited normal vegetative growth, but failed to produce seeds and displayed pollen abortion phenotype. Phenotypic comparisons between the wild-type and Osfignl1 mutant demonstrated that OsFIGNL1 is required for anther development, and that the recessive mutation of this gene causes male sterility in rice. Complementation and CRISPR/Cas9 experiments demonstrated that wild-type OsFIGNL1 is responsible for the male sterility phenotype. Subcellular localization showed that OsFIGNL1-green fluorescent protein was exclusively localized in the nucleus of rice protoplasts. Male meiosis in the Osfignl1 mutant exhibited abnormal chromosome behavior, including chromosome bridges and multivalent chromosomes at diakinesis, lagging chromosomes, and chromosome fragments during meiosis. Yeast two-hybrid assays demonstrated OsFIGNL1 could interact with RAD51A1, RAD51A2, DMC1A, DMC1B, and these physical interactions were further confirmed by BiFC assay. Taken together, our results suggest that OsFIGNL1 plays an important role in regulation of male meiosis and anther development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...